43: Animal Reproduction and Development - Biology

43: Animal Reproduction and Development - Biology

We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Animal reproduction is necessary for the survival of a species. Asexual reproduction produces genetically identical organisms (clones), whereas in sexual reproduction, the genetic material of two individuals combines to produce offspring that are genetically different from their parents.

  • 43.0: Prelude to Animal Reproduction and Development
    During sexual reproduction the male gamete (sperm) may be placed inside the female’s body for internal fertilization, or the sperm and eggs may be released into the environment for external fertilization. Seahorses provide an example of the latter. Following a mating dance, the female lays eggs in the male seahorse’s abdominal brood pouch where they are fertilized. The eggs hatch and the offspring develop in the pouch for several weeks.
  • 43.1: Reproduction Methods
    During sexual reproduction the genetic material of two individuals is combined to produce genetically diverse offspring that differ from their parents. The genetic diversity of sexually produced offspring is thought to give species a better chance of surviving in an unpredictable or changing environment. Species that reproduce sexually must maintain two different types of individuals, males and females, which can limit the ability to colonize new habitats as both sexes must be present.
  • 43.2: Fertilization
    Sexual reproduction starts with the combination of a sperm and an egg in a process called fertilization. This can occur either inside (internal fertilization) or outside (external fertilization) the body of the female. Humans provide an example of the former whereas seahorse reproduction is an example of the latter.
  • 43.3: Human Reproductive Anatomy and Gametogenesis
    As animals became more complex, specific organs and organ systems developed to support specific functions for the organism. The reproductive structures that evolved in land animals allow males and females to mate, fertilize internally, and support the growth and development of offspring.
  • 43.4: Hormonal Control of Human Reproduction
    The human male and female reproductive cycles are controlled by the interaction of hormones from the hypothalamus and anterior pituitary with hormones from reproductive tissues and organs. In both sexes, the hypothalamus monitors and causes the release of hormones from the pituitary gland. When the reproductive hormone is required, the hypothalamus sends a gonadotropin-releasing hormone (GnRH) to the anterior pituitary.
  • 43.5: Human Pregnancy and Birth
    Pregnancy begins with the fertilization of an egg and continues through to the birth of the individual. The length of time of gestation varies among animals, but is very similar among the great apes: human gestation is 266 days, while chimpanzee gestation is 237 days, a gorilla’s is 257 days, and orangutan gestation is 260 days long. The fox has a 57-day gestation. Dogs and cats have similar gestations averaging 60 days.
  • 43.6: Fertilization and Early Embryonic Development
    The process in which an organism develops from a single-celled zygote to a multi-cellular organism is complex and well-regulated. The early stages of embryonic development are also crucial for ensuring the fitness of the organism.
  • 43.7: Organogenesis and Vertebrate Formation
    Gastrulation leads to the formation of the three germ layers that give rise, during further development, to the different organs in the animal body. This process is called organogenesis. Organogenesis is characterized by rapid and precise movements of the cells within the embryo.
  • 43.E: Animal Reproduction and Development (Exercises)

43.2 Fertilization

By the end of this section, you will be able to do the following:

  • Discuss internal and external methods of fertilization
  • Describe the methods used by animals for development of offspring during gestation
  • Describe the anatomical adaptations that occurred in animals to facilitate reproduction

Sexual reproduction starts with the combination of a sperm and an egg in a process called fertilization. This can occur either inside ( internal fertilization ) or outside ( external fertilization ) the body of the female. Humans provide an example of the former whereas seahorse reproduction is an example of the latter.

External Fertilization

External fertilization usually occurs in aquatic environments where both eggs and sperm are released into the water. After the sperm reaches the egg, fertilization takes place. Most external fertilization happens during the process of spawning where one or several females release their eggs and the male(s) release sperm in the same area, at the same time. The release of the reproductive material may be triggered by water temperature or the length of daylight. Nearly all fish spawn, as do crustaceans (such as crabs and shrimp), mollusks (such as oysters), squid, and echinoderms (such as sea urchins and sea cucumbers). Figure 43.6 shows salmon spawning in a shallow stream. Frogs, like those shown in Figure 43.7, corals, molluscs, and sea cucumbers also spawn.

Pairs of fish that are not broadcast spawners may exhibit courtship behavior. This allows the female to select a particular male. The trigger for egg and sperm release (spawning) causes the egg and sperm to be placed in a small area, enhancing the possibility of fertilization.

External fertilization in an aquatic environment protects the eggs from drying out. Broadcast spawning can result in a greater mixture of the genes within a group, leading to higher genetic diversity and a greater chance of species survival in a hostile environment. For sessile aquatic organisms like sponges, broadcast spawning is the only mechanism for fertilization and colonization of new environments. The presence of the fertilized eggs and developing young in the water provides opportunities for predation resulting in a loss of offspring. Therefore, millions of eggs must be produced by individuals, and the offspring produced through this method must mature rapidly. The survival rate of eggs produced through broadcast spawning is low.

Internal Fertilization

Internal fertilization occurs most often in land-based animals, although some aquatic animals also use this method. There are three ways that offspring are produced following internal fertilization. In oviparity , fertilized eggs are laid outside the female’s body and develop there, receiving nourishment from the yolk that is a part of the egg. This occurs in most bony fish, many reptiles, some cartilaginous fish, most amphibians, two mammals, and all birds. Reptiles and insects produce leathery eggs, while birds and turtles produce eggs with high concentrations of calcium carbonate in the shell, making them hard. Chicken eggs are an example of this second type.

In ovoviparity , fertilized eggs are retained in the female, but the embryo obtains its nourishment from the egg’s yolk and the young are fully developed when they are hatched. This occurs in some bony fish (like the guppy Lebistes reticulatus), some sharks, some lizards, some snakes (such as the garter snake Thamnophis sirtalis), some vipers, and some invertebrate animals (like the Madagascar hissing cockroach Gromphadorhina portentosa).

In viviparity the young develop within the female, receiving nourishment from the mother’s blood through a placenta. The offspring develops in the female and is born alive. This occurs in most mammals, some cartilaginous fish, and a few reptiles.

Internal fertilization has the advantage of protecting the fertilized egg from dehydration on land. The embryo is isolated within the female, which limits predation on the young. Internal fertilization enhances the fertilization of eggs by a specific male. Fewer offspring are produced through this method, but their survival rate is higher than that for external fertilization.

The Evolution of Reproduction

Once multicellular organisms evolved and developed specialized cells, some also developed tissues and organs with specialized functions. An early development in reproduction occurred in the Annelids. These organisms produce sperm and eggs from undifferentiated cells in their coelom and store them in that cavity. When the coelom becomes filled, the cells are released through an excretory opening or by the body splitting open. Reproductive organs evolved with the development of gonads that produce sperm and eggs. These cells went through meiosis, an adaptation of mitosis, which reduced the number of chromosomes in each reproductive cell by half, while increasing the number of cells through cell division.

Complete reproductive systems were developed in insects, with separate sexes. Sperm are made in testes and then travel through coiled tubes to the epididymis for storage. Eggs mature in the ovary. When they are released from the ovary, they travel to the uterine tubes for fertilization. Some insects have a specialized sac, called a spermatheca , which stores sperm for later use, sometimes up to a year. Fertilization can be timed with environmental or food conditions that are optimal for offspring survival.

Vertebrates have similar structures, with a few differences. Non-mammals, such as birds and reptiles, have a common body opening, called a cloaca , for the digestive, excretory and reproductive systems. Coupling between birds usually involves positioning the cloaca openings opposite each other for transfer of sperm. Mammals have separate openings for the systems in the female and a uterus for support of developing offspring. The uterus has two chambers in species that produce large numbers of offspring at a time, while species that produce one offspring, such as primates, have a single uterus.

Sperm transfer from the male to the female during reproduction ranges from releasing the sperm into the watery environment for external fertilization, to the joining of cloaca in birds, to the development of a penis for direct delivery into the female’s vagina in mammals.

Multicellularity and Specialization

Content below adapted from OpenStax Biology 33.1

Multicellularity typically requires cell specialization, where different cells carry out different functions from each other and often have different morphologies (shapes) optimized for carrying out those functions. For example, circulatory systems bring nutrients and remove waste, while respiratory systems provide oxygen for the cells and remove carbon dioxide from them. Other organ systems have developed further specialization of cells and tissues and efficiently control body functions. Moreover, surface-to-volume ratio applies to other areas of animal development, such as the relationship between muscle mass and cross-sectional surface area in supporting skeletons, and in the relationship between muscle mass and the generation of dissipation (loss) of heat.

The evolution of multicellularity and cell specialization, as a result of selection to compensate for the upper limit on cell size, resulted in a requirement for development, or changes in an organism’s size, shape, and function. What factors control development?


Budding is a form of asexual reproduction that results from the outgrowth of a part of a cell or body region leading to a separation from the original organism into two individuals. Budding occurs commonly in some invertebrate animals such as corals and hydras. In hydras, a bud forms that develops into an adult and breaks away from the main body, as illustrated in Figure, whereas in coral budding, the bud does not detach and multiplies as part of a new colony.

Hydra reproduce asexually through budding.

Link to Learning

Watch a video of a hydra budding.

Animal Development / Embryology

Organogenesis can be defined as the production and development of the organ of an animal or plant.


By the process of organogenesis, the internal organs and specific body parts (such as limbs) are formed during the development of an organism. Organogenesis involves the coordination of multiple developmental processes such as embryonic induction, pattern formation, morphogenesis, cell proliferation and differentiation.

In humans, internal organs begin to develop within 3 to 8 weeks after fertilization. The cells of each of the three germ layers undergo differentiation from less specialised cells to more specialised cells. The internal organs are formed by folding, splitting and condensation of the germ layers. The germ layers of the embryo differentiate and specialise to form the various organs of the body.

In plants organogenesis occurs continuously and stops only when the plant dies. Plant organogenesis can be induced in tissue culture and to regenerate plants.



For one, it can be reproductive development. It can also be from baby to adolescent to adult. It can also be when they learn different things like learning to hunt or to catch prey.

General features

In multicellular animals (Metazoa), reproduction takes one of two essentially different forms: sexual and asexual. In asexual reproduction the new individual is derived from a blastema, a group of cells from the parent body, sometimes, as in Hydra and other coelenterates, in the form of a “bud” on the body surface. In sponges and bryozoans, the cell groups from which new individuals develop are formed internally and may be surrounded by protective shells these bodies, which may serve as resistant forms capable of withstanding unfavourable environmental conditions, are released after the death of the parent. In certain animals the parent may split in half, as in some worms, in which an individual worm breaks into two fairly equal parts (except that the anterior half receives the mouth, “brain,” and sense organs if they are present).

Obviously, in such a case it is impossible to say which of the two resulting individuals is the parent and which the offspring. Some brittle stars (starfish relatives) may reproduce by breaking across the middle of the body disk, with each of the halves subsequently growing its missing half and the corresponding arms.

A common feature of all forms of asexual reproduction is that the cells—always a substantial number of cells, never only one cell—taking part in the formation of the new individual are not essentially different from other body, or somatic, cells. The number of chromosomes (bodies carrying the hereditary material) in the cells participating in the formation of a blastema is the same as in the other somatic cells of the parent, constituting a normal, double, or diploid (2n), set.

In sexual reproduction, a new individual is produced not by somatic cells of the parent but by sex cells, or gametes, which differ essentially from somatic cells in having undergone meiosis, a process in which the number of chromosomes is reduced to one-half of the diploid (2n) number found in somatic cells cells containing one set of chromosomes are said to be haploid (n). The resulting sex cells thus receive only half the number of chromosomes present in the somatic cell. Furthermore, the sex cells are generally capable of developing into a new individual only after two have united in a process called fertilization.

Each type of reproduction—asexual and sexual—has advantages for the species. Asexual reproduction is, at least in some cases, the faster process, leading most rapidly to the development of large numbers of individuals. Males and females are independently capable of producing offspring. The large size of the original mass of living matter and its high degree of organization—the new individual inherits parts of the body of the parent: a part of the alimentary canal, for instance—make subsequent development more simple, and the attainment of a stage capable of self-support easier. New individuals produced by asexual reproduction have the same genetic constitution ( genotype) as their parent and constitute what is called a clone. Though asexual reproduction is advantageous in that, if the parent animal is well adapted to its environment and the latter is stable, then all offspring will benefit, it is disadvantageous in that the fixed genotype not only makes any change in offspring impossible, should the environment change, but also prevents the acquisition of new characteristics, as part of an evolutionary process. Sexual reproduction, on the other hand, provides possibilities for variation among offspring and thus assists evolution by allowing new pairs of genes to combine in offspring. Since all body cells are derived from the fertilized egg cell, a mutation, or change, occurring in the sex cells of the parents immediately provides a new genotype in each cell of the offspring. In the course of evolution, sexual reproduction has been selected for, and established in, all main lines of organisms asexual reproduction is found only in special cases and restricted groups of organisms.

The evolution of reproduction

An examination of the way in which organisms have changed since their initial unicellular condition in primeval times shows an increase in multicellularity and therefore an increase in the size of both plants and animals. After cell reproduction evolved into multicellular growth, the multicellular organism evolved a means of reproducing itself that is best described as life-cycle reproduction. Size increase has been accompanied by many mechanical requirements that have necessitated a selection for increased efficiency the result has been a great increase in the complexity of organisms. In terms of reproduction this means a great increase in the permutations of cell reproduction during the process of evolutionary development.

Size increase also means a longer life cycle, and with it a great diversity of patterns at different stages of the cycle. This is because each part of the life cycle is adaptive in that, through natural selection, certain characteristics have evolved for each stage that enable the organism to survive. The most extreme examples are those forms with two or more separate phases of their life cycle separated by a metamorphosis, as in caterpillars and butterflies these phases may be shortened or extended by natural selection, as has occurred in different species of coelenterates.

To reproduce efficiently in order to contribute effectively to subsequent generations is another factor that has evolved through natural selection. For instance, an organism can produce vast quantities of eggs of which, possibly by neglect, only a small percent will survive. On the other hand, an organism can produce very few or perhaps one egg, which, as it develops, will be cared for, thereby greatly increasing its chances for survival. These are two strategies of reproduction each has its advantages and disadvantages. Many other considerations of the natural history and structure of the organism determine, through natural selection, the strategy that is best for a particular species one of these is that any species must not produce too few offspring (for it will become extinct) or too many (for it may also become extinct by overpopulation and disease). The numbers of some organisms fluctuate cyclically but always remain between upper and lower limits. The question of how, through natural selection, numbers of individuals are controlled is a matter of great interest clearly, it involves factors that influence the rate of reproduction.

Fission , also called binary fission, occurs in prokaryotic microorganisms and in some invertebrate, multi-celled organisms. After a period of growth, an organism splits into two separate organisms. Some unicellular eukaryotic organisms undergo binary fission by mitosis. In other organisms, part of the individual separates and forms a second individual. This process occurs, for example, in many asteroid echinoderms through splitting of the central disk. Some sea anemones and some coral polyps ( [link] ) also reproduce through fission.

Coral polyps reproduce asexually by fission. (credit: G. P. Schmahl, NOAA FGBNMS Manager)

Internal fertilization

Internal fertilization occurs most often in land-based animals, although some aquatic animals also use this method. There are three ways that offspring are produced following internal fertilization. In oviparity , fertilized eggs are laid outside the female&rsquos body and develop there, receiving nourishment from the yolk that is a part of the egg. This occurs in most bony fish, many reptiles, some cartilaginous fish, most amphibians, two mammals, and all birds. Reptiles and insects produce leathery eggs, while birds and turtles produce eggs with high concentrations of calcium carbonate in the shell, making them hard. Chicken eggs are an example of this second type.

43: Animal Reproduction and Development - Biology

In female reproduction, the oocyte number is limited after birth. To achieve a continuous ovulatory cycle, oocytes are stored in primordial follicles. Therefore, the regulation of primordial follicle dormancy and activation is important for reproductive sustainability, and its collapse leads to premature ovarian insufficiency. In this review, we summarize primordial follicle development and the molecular mechanisms underlying primordial follicle maintenance and activation in mice. We also overview the mechanisms discovered through in vitro culture of functional oocytes, including the establishment of primordial follicle induction by environmental factors, which revealed the importance of hypoxia and compression by the extra cellular matrix (ECM) for primordial follicle maintenance in vivo.

Cover Story:
In mammalian female reproduction, primordial follicles serve as stores to sustain the ovulation cycle. Regulations of primordial follicle development, activation, and dormancy in mice are summarized in a review by Nagamatsu (pp. 189–195). The importance of mechanical stress, especially extracellular matrix (ECM)-mediated pressure, for the maintenance of primordial follicle dormancy was recently demonstrated. Primordial follicles treated with collagenase, trypsin, and knockout serum replacement (KSR) (this mixture called CTK) to digest ECM were examined by immunohistochemistry. Ovaries treated solely with phosphate-buffered saline displayed primordial follicles composed of flat granulosa cells and complex stress fibers, as revealed by phalloidin. In contrast, CTK treatment resulted in fewer stress fibers and cuboidal-shaped granulosa cells, suggesting oocyte activation.

Embryonic stem (ES) cells, derived from the inner cell mass of a blastocyst, are believed to pluripotent cells and give rise to embryonic, but not extraembryonic, tissues. In mice, totipotent 2-cell stage embryo-like (2-cell-like) cells, which are identified by reactivation of murine endogenous retrovirus with leucin transfer RNA primer (MuERV-L), arise at a very few frequencies in ES cell cultures. Here, we found that a lipid droplet forms during the transition from ES cells to 2-cell-like cells, and we propose that 2-cell-like cells utilize a unique energy storage and production pathway.

Cover Story:
Recent studies suggested that a small sub-population of embryonic stem (ES) cells exhibit 2-cell stage embryo-like (2-cell-like) features, including the reactivation of murine endogenous retrovirus with leucin transfer RNA primer, high histone mobility, and dispersed chromocenters. Furuta et al. investigated the organelle morphology of 2-cell-like cells using electron microscopy (Furuta et al. Lipid droplets are formed in 2-cell-like cells. pp. 79–81). They demonstrated the formation of a lipid droplet during the transition from ES cells to 2-cell-like cells, and proposed that these cells utilize a unique energy storage and production pathway.

The structure of microtubules is essential for the fertilizing ability of spermatozoa. Acetylation of α-tubulin plays an important role in flagellar elongation and spermatozoa motility. Previous reports have suggested that alpha-tubulin N-acetyltransferase 1 (ATAT1) is the main acetyltransferase involved in the acetylation of α-tubulin. Although ATAT1 is reported to express in the testis, no information is available regarding its expression in elongated spermatids, epididymis, and mature spermatozoa. Hence, it remains unclear whether ATAT1 is involved in spermatozoa maturation and capacitation. Therefore, we evaluated the expression of ATAT1 in the mouse male reproductive system using immunostaining and western blotting. Our results showed that ATAT1 was expressed in spermatids during spermiogenesis in mouse testes, but its expression varied according to the seminiferous tubule stage. We observed ATAT1 in the cytoplasm of round spermatids, the flagella of elongated spermatids, and in the cytoplasm of step 16 spermatids, just before its release into the lumen. In addition, ATAT1 was expressed in epithelial cells of the epididymis. In spermatozoa of the cauda epididymis, ATAT1 expression was primarily observed in the midpiece of the spermatozoa. The localization of ATAT1 protein in the male germline was observed during spermiogenesis as well as during spermatozoa maturation. Our results suggest that ATAT1 may be involved in the formation of flagella and in the acetylation process, which has attracted attention in recent years regarding male infertility.

Cover Story:
Previous reports suggested the involvement of alpha-tubulin N-acetyltransferase 1 (ATAT1) in flagella formation in spermatozoa however, whether ATAT1 is expressed in flagella and involved in spermatozoa maturation and capacitation remains to be elucidated. Yanai et al. evaluated the expression of ATAT1 in the male reproductive system in mice using immunostaining and western blotting (Yanai et al. Expression and localization of alpha-tubulin N-acetyltransferase 1 in the reproductive system of male mice. pp. 59–66). The localization of ATAT1 protein in the male germline was detected during spermiogenesis as well as spermatozoa maturation. Therefore, these results suggest that ATAT1 might be involved not only in flagella formation, but also in the acetylation process during spermatozoa maturation and capacitation.

Watch the video: Reproductive System, Part 4 - Pregnancy u0026 Development: Crash Course Au0026P #43 (August 2022).